6.2 Orthogonal Sets

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is, if $\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0$ whenever $i \neq j$.

Example 1. Determine which sets of vectors are orthogonal.
(1) $\mathbf{u}_{1}=\left[\begin{array}{r}-1 \\ 4 \\ -3\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}5 \\ 2 \\ 1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{r}3 \\ -4 \\ -7\end{array}\right]$.

$$
\vec{u}_{1} \cdot \vec{u}_{3}=\left[\begin{array}{c}
-1 \\
4 \\
-3
\end{array}\right] \cdot\left[\begin{array}{c}
3 \\
-4 \\
-7
\end{array}\right]=-3-16+21=2 \neq 0
$$

Thus the set is not an orthogonal set.
(2) $\mathbf{u}_{1}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{c}-1 / 2 \\ -2 \\ 7 / 2\end{array}\right]$

FIGURE 1

$$
\begin{aligned}
& \vec{u}_{1} \cdot \vec{u}_{2}=3 \times(-1)+1 \times 2+1 \times 1=0 \\
& \vec{u}_{1} \cdot \vec{u}_{3}=3 \times\left(-\frac{1}{2}\right)+1 \times(-2)+1 \times \frac{7}{2}=0 \\
& \vec{u}_{2} \cdot \vec{u}_{3}=-1 \times\left(-\frac{1}{2}\right)+2 \times(-2)+1 \times \frac{7}{2}=0
\end{aligned}
$$

Since each pair of distinct
vectors is orthogenal,

$$
\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\} \text { is an orthogonal set }
$$

proof on Page 359
Theorem 4 If $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^{n}, then S is linearly independent and hence is a basis for the subspace spanned by S.

Definition. An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis for W that is also an orthogonal set.
The next theorem suggests why an orthogonal basis is much nicer than other bases. The weights in a linear combination can be computed easily.

Theorem 5. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. For each \mathbf{y} in W, the weights in the linear combination

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}
$$

are given by

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}} \quad(j=1, \ldots, p)
$$

Proof:

$$
\begin{aligned}
& \quad \vec{y}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\cdots+c_{p} \vec{u}_{p} \\
& \Rightarrow \\
& \vec{y} \cdot \vec{u}_{1}=c_{1} \vec{u}_{1} \cdot \vec{u}_{1}+c_{2} \overrightarrow{u_{2}} \cdot \vec{u}_{1}+\cdots+c_{p} \vec{u}_{p} \cdot \vec{u}_{1} \\
& \Rightarrow \\
& \vec{y} \cdot \overrightarrow{u_{1}}=c_{1} \vec{u}_{1} \cdot \vec{u}_{1} \\
& \Rightarrow \\
& c_{1}=\frac{y \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}
\end{aligned}
$$

Similarly, the result. holds for every $C_{j}(j=1, \cdots, p)$

An Orthogonal Projection
Given a nonzero vector \mathbf{u} in \mathbb{R}^{n}, consider the problem of decomposing a vector \mathbf{y} in \mathbb{R}^{n} into the sum of two vectors, one a multiple of \mathbf{u} and the other orthogonal to \mathbf{u}.

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

where $\hat{\mathbf{y}}=\alpha \mathbf{u}$ for some scalar α and \mathbf{z} is some vector orthogonal to \mathbf{u}. We can show that $\alpha=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$:

FIGURE 2
Finding α to make $\mathbf{y}-\hat{\mathbf{y}}$ orthogonal to \mathbf{u}.

The vector $\hat{\mathbf{y}}$ is called the orthogonal projection of \mathbf{y} onto \mathbf{u}, and the vector \mathbf{z} is called the component of $\hat{\mathbf{y}}$ orthogonal to u. Let 1 be the line Spanned by \vec{u} (line through \vec{u} and $\overrightarrow{0}$) Note $\hat{\mathbf{y}}$ is also denoted by $\operatorname{proj}_{L} \mathbf{y}$ and is called the orthogonal projection of $\dot{\mathbf{y}}$ onto L.

$$
\hat{\mathbf{y}}=\operatorname{proj}_{L} \mathbf{y}=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}
$$

Example 2. Compute the orthogonal projection of $\left[\begin{array}{l}1 \\ 7\end{array}\right]$ onto the line through $\left[\begin{array}{r}-4 \\ 2\end{array}\right]$ and the origin.

$$
\begin{aligned}
& \vec{M} \quad \vec{u} \\
& x_{2} \stackrel{\rightharpoonup}{\hat{y}} \vec{y}=\operatorname{proj}+\vec{y}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} \\
& =\frac{\left[\begin{array}{l}
1 \\
7
\end{array}\right] \cdot\left[\begin{array}{c}
-4 \\
2
\end{array}\right]}{\left[\begin{array}{c}
-4 \\
2
\end{array}\right]-\left[\begin{array}{c}
-4 \\
2
\end{array}\right]} \cdot\left[\begin{array}{r}
-4 \\
2
\end{array}\right] \\
& =\frac{-4+14}{16+4}\left[\begin{array}{c}
-4 \\
2
\end{array}\right]=\frac{10}{20}\left[\begin{array}{c}
-4 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\end{aligned}
$$

Example 3. Let $\mathbf{y}=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$.
(1) Find the orthogonal projection of \mathbf{y} onto \mathbf{u}.
(2) Write \mathbf{y} as the sum of two orthogonal vectors, one in Span $\{\mathbf{u}\}$ and one orthogonal to \mathbf{u}.
(3) Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.

FIGURE 3 The orthogonal projection of \mathbf{y} onto a line L through the origin.

Ans:

$$
\text { (1) } \hat{\vec{y}}=\operatorname{proj}_{L} \vec{y}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}
$$

$$
=\frac{\left[\begin{array}{l}
7 \\
6
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
2
\end{array}\right]}{\left[\begin{array}{l}
4 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
2
\end{array}\right]} \vec{u}
$$

$$
=\frac{40}{20}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right]
$$

(2) The component of \vec{y} orthogonal to \vec{u} is

$$
\vec{z}=\vec{y}-\overrightarrow{\vec{y}}=\left[\begin{array}{l}
7 \\
6
\end{array}\right]-\left[\begin{array}{l}
8 \\
4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] . \quad \text { in } \operatorname{span}\{\vec{u}]
$$

(3) Notice that the distance from \vec{y} to L is the length of $\vec{y}-\vec{y}=\vec{z}$.

$$
\|\vec{y}-\hat{\vec{y}}\|=\sqrt{(-1)^{2}+2^{2}}=\sqrt{5}
$$

Orthonormal Sets
A set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal set if it is an orthogonal set of unit vectors. If W is the subspace spanned by such a set, then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for W, since the set is automatically linearly independent, by Theorem 4.

Example 4. Determine which sets of vectors are orthonormal. If a set is only orthogonal, normalize the vectors to produce an orthonormal set.
(1) $\left[\begin{array}{r}-2 / 3 \\ 1 / 3 \\ 2 / 3\end{array}\right],\left[\begin{array}{c}1 / 3 \\ 11 \\ \vec{n}\end{array}\right.$
(2) $\left[\begin{array}{l}1 / \sqrt{18} \\ 4 / \sqrt{18} \\ 1 / \sqrt{18}\end{array}\right],\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2}\end{array}\right],\left[\begin{array}{r}-2 / 3 \\ 1 / 3 \\ -2 / 3\end{array}\right]$
(1) $\vec{u} \cdot \vec{v}=-\frac{2}{9}+\frac{2}{9}=0$

Thus $\{\vec{u}, \vec{v}\}$ is an orthogonal set

$$
\begin{aligned}
& \|\vec{u}\|^{2}=\vec{u} \cdot \vec{u}=\frac{4}{9}+\frac{1}{9}+\frac{4}{9}=1 \\
& \|\vec{v}\|^{2}=\frac{1}{9}+\frac{4}{9}=\frac{5}{9} \neq 1 \text { and }\|\vec{v}\|=\frac{\sqrt{5}}{3}
\end{aligned}
$$

Thus $\{\vec{a}, \vec{v}\}$ is not an orthonormal set. We can normalize \vec{u}, \vec{v} to form the orthonormal set:

$$
\left\{\frac{\vec{u}}{\|\vec{u}\|}, \frac{\vec{v}}{\|\vec{v}\|}\right\}=\left\{\left[\begin{array}{c}
-\frac{2}{3} \\
\frac{1}{3} \\
\frac{2}{3}
\end{array}\right], \quad\left[\begin{array}{c}
\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} \\
0
\end{array}\right]\right\}
$$

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=0 \\
& \vec{n} \cdot \vec{w}=0 \\
& \vec{v} \cdot \vec{w}=0
\end{aligned}
$$

Thus $\{\vec{u}, \vec{v}, \vec{w}\}$ is an orthogonal set

$$
\begin{aligned}
& \|\vec{u}\|^{2}=\vec{u} \cdot \vec{u}=\frac{1}{18}+\frac{16}{18}+\frac{1}{18}=1 \\
& \|\vec{v}\|^{2}=\frac{1}{2}+\frac{1}{2}=1 \\
& \|\vec{w}\|^{2}=\frac{4}{9}+\frac{1}{9}+\frac{4}{9}=1
\end{aligned}
$$

Thus $\{\vec{u}, \vec{v}, \vec{w}\}$ is also an orthonormal basis.

Theorem 6. An $m \times n$ matrix U has orthonormal columns if and only if $U_{n \times m}^{T} U_{m \times n} \overline{\overline{x n}} I_{n}$

Theorem 7. Let U be an $m \times n$ matrix with orthonormal columns, and let \mathbf{x} and \mathbf{y} be in \mathbb{R}^{n}. Then
a. $\|U \mathbf{x}\|=\|\mathbf{x}\| \quad U$ preserves the length
b. $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y} \quad U$ preserves the inner product
c. $(U \mathbf{x}) \cdot(U \mathbf{y})=0$ if and only if $\mathbf{x} \cdot \mathbf{y}=0 \quad U$ preserves orthogennality

Exercise 5. Let $\mathbf{y}=\left[\begin{array}{r}-3 \\ 9\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.
Solution. The distance from \mathbf{y} to the line through \mathbf{u} and the origin is $\|\mathbf{y}-\hat{\mathbf{y}}\|$. One computes that $\mathbf{y}-\hat{\mathbf{y}}=\mathbf{y}-\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\left[\begin{array}{r}-3 \\ 9\end{array}\right]-3\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{r}-6 \\ 3\end{array}\right]$, so $\|\mathbf{y}-\hat{\mathbf{y}}\|=\sqrt{36+9}=3 \sqrt{5}$ is the desired distance.

