6.2 Orthogonal Sets

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in \mathbb{R}^n is said to be an **orthogonal** set if each pair of distinct vectors from the set is orthogonal, that is, if $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$.

Example 1. Determine which sets of vectors are orthogonal.

(1)
$$\mathbf{u}_{1} = \begin{bmatrix} -1 \\ 4 \\ -3 \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix}, \mathbf{u}_{3} = \begin{bmatrix} 3 \\ -4 \\ -7 \end{bmatrix}.$$

 $\vec{\mathbf{h}}_{1} \cdot \vec{\mathbf{h}}_{3} = \begin{bmatrix} -1 \\ 4 \\ -3 \end{bmatrix}, \begin{bmatrix} 3 \\ -4 \\ -7 \end{bmatrix} = -3 - \frac{16}{16} + 2 = 2 \neq 0$

Thus the set is not an orthogonal set.

(2)
$$\mathbf{u}_{1} = \begin{bmatrix} 3\\1\\1 \end{bmatrix}$$
, $\mathbf{u}_{2} = \begin{bmatrix} -1\\2\\1 \end{bmatrix}$, $\mathbf{u}_{3} = \begin{bmatrix} -1/2\\-2\\7/2 \end{bmatrix}$
 $\vec{u}_{1} \cdot \vec{u}_{2} = 3 \times (-1) + | \times 2 + 1 \times | = D$
 $\vec{u}_{1} \cdot \vec{u}_{3} = 3 \times (-\frac{1}{2}) + | \times (-2) + | \times \frac{7}{2} = D$
 $\vec{u}_{1} \cdot \vec{u}_{2} = 3 \times (-\frac{1}{2}) + 2 \times (-2) + | \times \frac{7}{2} = D$
 $\vec{u}_{2} \cdot \vec{u}_{3} = -| \times (-\frac{1}{2}) + 2 \times (-2) + | \times \frac{7}{2} = D$
Since each pair of distinct
Vectors is or the gunal,
Figure 1
Figure 1

proof on Page 359

Theorem 4 If $S = {\mathbf{u}_1, \dots, \mathbf{u}_p}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then *S* is linearly independent and hence is a basis for the subspace spanned by *S*.

Definition. An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

The next theorem suggests why an orthogonal basis is much nicer than other bases. The weights in a linear combination can be computed easily.

Theorem 5. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \mathbf{y} in W, the weights in the linear combination

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$

are given by

$$c_j = rac{\mathbf{y}\cdot\mathbf{u}_j}{\mathbf{u}_j\cdot\mathbf{u}_j} \quad (j=1,\dots,p)$$

Proof:
$$\vec{y} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + \dots + c_p \vec{u}_p$$

 $\Rightarrow \vec{y} \cdot \vec{u}_1 = c_1 \vec{u}_1 \cdot \vec{u}_1 + c_2 \vec{u}_2 \cdot \vec{u}_1 + \dots + c_p \vec{u}_p \cdot \vec{u}_1$
 $\Rightarrow \vec{y} \cdot \vec{u}_1 = c_1 \vec{u}_1 \cdot \vec{u}_1$
 $\Rightarrow \vec{y} \cdot \vec{u}_1 = c_1 \vec{u}_1 \cdot \vec{u}_1$

Similary, the result holds for every Cj (j=1,...,p)

An Orthogonal Projection

Given a nonzero vector \mathbf{u} in \mathbb{R}^n , consider the problem of decomposing a vector \mathbf{y} in \mathbb{R}^n into the sum of two vectors, one a multiple of \mathbf{u} and the other orthogonal to \mathbf{u} .

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

where
$$\hat{\mathbf{y}} = \alpha \mathbf{u}$$
 for some scalar α and \mathbf{z} is some vector orthogonal to \mathbf{u} . We can show that $\alpha = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$:
As $\hat{\mathbf{y}} = \alpha \vec{\mathbf{u}}$, $\vec{\mathbf{z}} = \hat{\mathbf{y}} - \alpha \vec{\mathbf{u}}$
As $\hat{\mathbf{y}} = \alpha \vec{\mathbf{u}}$, $\vec{\mathbf{z}} = \hat{\mathbf{y}} - \alpha \vec{\mathbf{u}}$
also $\vec{\mathbf{z}}$ is or thogonal to $\vec{\mathbf{u}}$
 $0 = \vec{\mathbf{z}} \cdot \vec{\mathbf{u}} = (\vec{\mathbf{y}} - \alpha \vec{\mathbf{u}}) \cdot \vec{\mathbf{u}} = \vec{\mathbf{y}} \cdot \vec{\mathbf{u}} - \alpha \vec{\mathbf{u}} \cdot \vec{\mathbf{u}}$
FIGURE 2
Finding α to make $\mathbf{y} - \hat{\mathbf{y}}$
orthogonal to \mathbf{u} .

The vector $\hat{\mathbf{y}}$ is called the **orthogonal projection of y onto u**, and the vector \mathbf{z} is called the **component of** $\hat{\mathbf{y}}$ **orthogonal to u**. Let $\boldsymbol{\perp}$ be the line Spanned by \vec{u} (line through \vec{u} and \vec{o}) Note $\hat{\mathbf{y}}$ is also denoted by $\operatorname{proj}_{L} \mathbf{y}$ and is called **the orthogonal projection of** $\hat{\mathbf{y}}$ **onto** L.

$$\hat{\mathbf{y}} = \operatorname{proj}_L \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$

Example 2. Compute the orthogonal projection of
$$\begin{bmatrix} 1\\7 \end{bmatrix}$$
 onto the line through $\begin{bmatrix} -4\\2 \end{bmatrix}$ and the origin.
 $\vec{y} = proj_{\perp} \vec{y} = \frac{\vec{y} \cdot \vec{k}}{\vec{k} \cdot \vec{k}} \vec{k}$
 $= \frac{\vec{1} \cdot \vec{1} \cdot \vec{k}}{\left[\frac{-4}{2}\right] \cdot \left[\frac{-4}{2}\right]} \cdot \begin{bmatrix} -4\\2 \end{bmatrix}$
 $= \frac{\vec{1} \cdot \vec{1} \cdot \vec{k}}{\left[\frac{-4}{2}\right] \cdot \left[\frac{-4}{2}\right]} = \frac{10}{20} \begin{bmatrix} -4\\2 \end{bmatrix} = \begin{bmatrix} -2\\1 \end{bmatrix}$

Example 3. Let $\mathbf{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$.

(1) Find the orthogonal projection of ${f y}$ onto ${f u}.$

(2) Write ${f y}$ as the sum of two orthogonal vectors, one in Span $\{{f u}\}$ and one orthogonal to ${f u}.$

(3) Compute the distance from ${f y}$ to the line through ${f u}$ and the origin.

(3) Notice that the distance from \vec{y} to L is the length of $\vec{y} - \hat{\vec{y}} = \vec{z}$. $\|\vec{y} - \hat{\vec{y}}\| = \sqrt{(-1)^2 + 2^2} = \sqrt{5}$

Orthonormal Sets

A set $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is an **orthonormal set** if it is an orthogonal set of unit vectors. If W is the subspace spanned by such a set, then $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is an **orthonormal basis** for W, since the set is automatically linearly independent, by Theorem 4.

Example 4. Determine which sets of vectors are orthonormal. If a set is only orthogonal, normalize the vectors to produce an orthonormal set.

(1)
$$\vec{n} \cdot \vec{v} = -\frac{2}{q} + \frac{2}{q} = 0$$

Thus $\{\vec{n}, \vec{v}\}\$ is an orthogonal set
 $\||\vec{n}||^2 = \vec{n} \cdot \vec{n} = \frac{4}{q} + \frac{4}{q} + \frac{4}{q} = 1$
 $\||\vec{v}||^2 = \vec{q} + \frac{4}{q} = \frac{2}{q} \neq 1$ and $\|\vec{v}\| = \frac{\sqrt{5}}{3}$
Thus $\{\vec{u}, \vec{v}\}\$ is not an orthonormal set.
We can normalize \vec{u}, \vec{v} to form the orthonormal set:
 $\{\frac{\vec{n}}{||\vec{n}||}, \frac{\vec{v}}{||\vec{v}||}\}^2 = \{\begin{bmatrix} -\frac{2}{3}\\ \frac{1}{3}\\ \frac{2}{3} \end{bmatrix}, \begin{bmatrix} \frac{1}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\\ \frac{2}{\sqrt{5}}\\ 0 \end{bmatrix}\}$

(2)
$$\begin{bmatrix} 1/\sqrt{18} \\ 4/\sqrt{18} \\ 1/\sqrt{18} \\ 1/\sqrt{18} \end{bmatrix}, \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{bmatrix}, \begin{bmatrix} -2/3 \\ 1/3 \\ -2/3 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ W \end{bmatrix} \quad \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{bmatrix}, \begin{bmatrix} 1/3 \\ -2/3 \\ -2/3 \end{bmatrix}$$

$$\begin{bmatrix} 1/\sqrt{18} \\ 1/\sqrt{18} \\ -2/3 \end{bmatrix}$$

$$\begin{bmatrix} 1/\sqrt{18} \\ 1/\sqrt{18} \\ -2/3 \end{bmatrix}$$

$$\begin{bmatrix} 1/\sqrt{18} \\ V \end{bmatrix} \quad \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{bmatrix}, \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{18} \end{bmatrix}$$

$$\begin{bmatrix} 1/\sqrt{18} \\ W \end{bmatrix} \quad = 0$$

$$\hline W \quad = 0$$

Theorem 6. An $m \times n$ matrix U has orthonormal columns if and only if $U_{n}^T U_{n} = I_n$

Theorem 7. Let U be an $m \times n$ matrix with orthonormal columns, and let \mathbf{x} and \mathbf{y} be in \mathbb{R}^n . Then a. $||U\mathbf{x}|| = ||\mathbf{x}||$ \mathcal{U} preserves the length b. $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ \mathcal{U} preserves the inner product. c. $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$ if and only if $\mathbf{x} \cdot \mathbf{y} = 0$ \mathcal{U} preserves orthogonality

Exercise 5. Let $\mathbf{y} = \begin{bmatrix} -3 \\ 9 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.

Solution. The distance from \mathbf{y} to the line through \mathbf{u} and the origin is $\|\mathbf{y} - \hat{\mathbf{y}}\|$. One computes that $\mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = \begin{bmatrix} -3\\ 9 \end{bmatrix} - 3\begin{bmatrix} 1\\ 2 \end{bmatrix} = \begin{bmatrix} -6\\ 3 \end{bmatrix}$, so $\|\mathbf{y} - \hat{\mathbf{y}}\| = \sqrt{36 + 9} = 3\sqrt{5}$ is the desired distance.